探秘Java反序列化漏洞二:反序列化过程分析
这里我们会主要分析自定义反序列化时readObject是如何被调用的
反序列化流程
在反序列化时我们会调用readObject
方法,那么其中的执行又经过了哪些过程呢?
首先ObjectInputStream(InputStream in)
有参构造方法设置enableOverride = false
public ObjectInputStream(InputStream in) throws IOException {
verifySubclass();
bin = new BlockDataInputStream(in);
handles = new HandleTable(10);
vlist = new ValidationList();
serialFilter = ObjectInputFilter.Config.getSerialFilter();
enableOverride = false;
readStreamHeader();
bin.setBlockDataMode(true);
}
所以readObject
会执行readObject0(false)
public final Object readObject()
throws IOException, ClassNotFoundException
{
if (enableOverride) {
return readObjectOverride();
}
// if nested read, passHandle contains handle of enclosing object
int outerHandle = passHandle;
try {
Object obj = readObject0(false);
handles.markDependency(outerHandle, passHandle);
ClassNotFoundException ex = handles.lookupException(passHandle);
if (ex != null) {
throw ex;
}
if (depth == 0) {
vlist.doCallbacks();
}
return obj;
} finally {
passHandle = outerHandle;
if (closed && depth == 0) {
clear();
}
}
}
由此进入readObject
方法
private Object readObject0(boolean unshared) throws IOException {
boolean oldMode = bin.getBlockDataMode();
if (oldMode) {
int remain = bin.currentBlockRemaining();
if (remain > 0) {
throw new OptionalDataException(remain);
} else if (defaultDataEnd) {
/*
* Fix for 4360508: stream is currently at the end of a field
* value block written via default serialization; since there
* is no terminating TC_ENDBLOCKDATA tag, simulate
* end-of-custom-data behavior explicitly.
*/
throw new OptionalDataException(true);
}
bin.setBlockDataMode(false);
}
byte tc;
while ((tc = bin.peekByte()) == TC_RESET) {
bin.readByte();
handleReset();
}
depth++;
totalObjectRefs++;
try {
switch (tc) {
case TC_NULL:
return readNull();
case TC_REFERENCE:
return readHandle(unshared);
case TC_CLASS:
return readClass(unshared);
case TC_CLASSDESC:
case TC_PROXYCLASSDESC:
return readClassDesc(unshared);
case TC_STRING:
case TC_LONGSTRING:
return checkResolve(readString(unshared));
case TC_ARRAY:
return checkResolve(readArray(unshared));
case TC_ENUM:
return checkResolve(readEnum(unshared));
case TC_OBJECT:
return checkResolve(readOrdinaryObject(unshared));
case TC_EXCEPTION:
IOException ex = readFatalException();
throw new WriteAbortedException("writing aborted", ex);
case TC_BLOCKDATA:
case TC_BLOCKDATALONG:
if (oldMode) {
bin.setBlockDataMode(true);
bin.peek(); // force header read
throw new OptionalDataException(
bin.currentBlockRemaining());
} else {
throw new StreamCorruptedException(
"unexpected block data");
}
case TC_ENDBLOCKDATA:
if (oldMode) {
throw new OptionalDataException(true);
} else {
throw new StreamCorruptedException(
"unexpected end of block data");
}
default:
throw new StreamCorruptedException(
String.format("invalid type code: %02X", tc));
}
} finally {
depth--;
bin.setBlockDataMode(oldMode);
}
}
可以看到在改方法中开始分析我们序列化的内容,在switch中我们可以与之前分析的序列化后结构一一对应,其对应字节数据位于ObjectStreamConstants
接口中

在上述代码中我们主要关注的是TC_OBJECT,其执行的方法是:checkResolve(readOrdinaryObject(unshared))
–>readOrdinaryObject
方法代码如下
private Object readOrdinaryObject(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_OBJECT) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);
desc.checkDeserialize();
Class<?> cl = desc.forClass();
if (cl == String.class || cl == Class.class
|| cl == ObjectStreamClass.class) {
throw new InvalidClassException("invalid class descriptor");
}
Object obj;
try {
obj = desc.isInstantiable() ? desc.newInstance() : null;
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
passHandle = handles.assign(unshared ? unsharedMarker : obj);
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(passHandle, resolveEx);
}
if (desc.isExternalizable()) {
readExternalData((Externalizable) obj, desc);
} else {
readSerialData(obj, desc);
}
handles.finish(passHandle);
if (obj != null &&
handles.lookupException(passHandle) == null &&
desc.hasReadResolveMethod())
{
Object rep = desc.invokeReadResolve(obj);
if (unshared && rep.getClass().isArray()) {
rep = cloneArray(rep);
}
if (rep != obj) {
// Filter the replacement object
if (rep != null) {
if (rep.getClass().isArray()) {
filterCheck(rep.getClass(), Array.getLength(rep));
} else {
filterCheck(rep.getClass(), -1);
}
}
handles.setObject(passHandle, obj = rep);
}
}
return obj;
}
在代码中通过
Object obj;
try {
obj = desc.isInstantiable() ? desc.newInstance() : null;
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
来判断对象的Class是否可以实例化,如果可以就创建它的实例desc.newInstance()
紧接着通过if-eles判断进入关键位置readSerialData(Object obj, ObjectStreamClass desc)
(注:1.如果实现了Externalizable接口,是不会调用readSerialData方法的 2.这里的传入参数obj就是上面通过反射获得的构造函数进而构造出来的对象)
private void readSerialData(Object obj, ObjectStreamClass desc)
throws IOException
{
ObjectStreamClass.ClassDataSlot[] slots = desc.getClassDataLayout();
for (int i = 0; i < slots.length; i++) {
ObjectStreamClass slotDesc = slots[i].desc;
if (slots[i].hasData) {
if (obj == null || handles.lookupException(passHandle) != null) {
defaultReadFields(null, slotDesc); // skip field values
} else if (slotDesc.hasReadObjectMethod()) {
ThreadDeath t = null;
boolean reset = false;
SerialCallbackContext oldContext = curContext;
if (oldContext != null)
oldContext.check();
try {
curContext = new SerialCallbackContext(obj, slotDesc);
bin.setBlockDataMode(true);
slotDesc.invokeReadObject(obj, this);
} catch (ClassNotFoundException ex) {
/*
* In most cases, the handle table has already
* propagated a CNFException to passHandle at this
* point; this mark call is included to address cases
* where the custom readObject method has cons'ed and
* thrown a new CNFException of its own.
*/
handles.markException(passHandle, ex);
} finally {
do {
try {
curContext.setUsed();
if (oldContext!= null)
oldContext.check();
curContext = oldContext;
reset = true;
} catch (ThreadDeath x) {
t = x; // defer until reset is true
}
} while (!reset);
if (t != null)
throw t;
}
/*
* defaultDataEnd may have been set indirectly by custom
* readObject() method when calling defaultReadObject() or
* readFields(); clear it to restore normal read behavior.
*/
defaultDataEnd = false;
} else {
defaultReadFields(obj, slotDesc);
}
if (slotDesc.hasWriteObjectData()) {
skipCustomData();
} else {
bin.setBlockDataMode(false);
}
} else {
if (obj != null &&
slotDesc.hasReadObjectNoDataMethod() &&
handles.lookupException(passHandle) == null)
{
slotDesc.invokeReadObjectNoData(obj);
}
}
}
}
在进入readSerialData
后经过一系列数据判断和查看是否有readObject方法后执行进入invokeReadObject(Object obj, ObjectInputStream in)
并判断是否有readObjectMethod
,如果有则执行readObjectMethod.invoke(obj, new Object[]{ in })
反射调用我们自定义的readObject
方法
根据上述过程分析,简单总结了一下关键流程,见下图

反序列攻击时序图(by:xxlegend)

自定义反序列化来弹一个计算器
明白了上述分析的readObject过程,接下来我们通过重写readObject来自定义反序列化行为由此直接操作Runtime
弹一个计算器
序列化
public class Ser implements Serializable{
private static final long serialVersionUID = 1L;
public int num=911;
//重写readObject方法
private void readObject(java.io.ObjectInputStream in) throws IOException,ClassNotFoundException{
in.defaultReadObject();//调用原始的readOject方法
Runtime.getRuntime().exec("open /Applications/Calculator.app");
System.out.println("test");
}
public static void main(String[] args) {
try {
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("object.obj"));
Ser ser=new Ser();
oos.writeObject(ser);//序列化关键函数
oos.flush(); //缓冲流
oos.close(); //关闭流
} catch (IOException e) {
e.printStackTrace();
}
}
}
(注:这里我们写的执行序列化的类同时为被序列化的类)
反序列化
public class DeSer{
public static void main(String[] args) throws ClassNotFoundException, IOException {
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("object.obj"));
Ser s = (Ser) ois.readObject();
System.out.println(s.num);
ois.close();
}
}
效果如下

风险
- 信息泄漏
- 数据篡改(伪造,拒绝服务)
- 命令执行
RCE前提
- 数据未经过滤直接进入readObject
- 存在可利用的反序列类
-
常见触发点:
readObject() readObjectNoData() readExternal() readResolve() validateObject() finalize()
参考资料
https://www.cnblogs.com/huhx/p/sSerializableTheory.html
https://blog.csdn.net/u014653197/article/details/78114041
近期评论